Merkblatt zum sinnvollen Aufstellen von Formeln chemischer Verbindungen

Da es eine unvorstellbar große Zahl an chemischen Verbindungen gibt, ist es nahezu unmöglich und auch nicht sinnvoll, alle Formeln auswendig zu lernen. Es macht mehr Sinn, sich einige wichtige Verbindungen einzuprägen ("Stammverbindungen") und alle anderen davon abzuleiten.

Beispiel: Die Formel von **Natriumphosphat** wird gesucht!

- → Dazu muss man wissen, dass sich alle "Phosphate" von der Phosphorsäure ableiten lassen!
- → Die Formel der Phosphorsäure (Stammverbindung) wird gelernt: H₃PO₄
- → Phosphorsäure ist eine **3-protonige Säure**, d.h. der Phosphatrest (Phosphat-Anion) PO₄³⁻ ist **dreiwertig**
- → Da Natrium-Kationen Na⁺ einwertig sind (ebenso wie die Protonen!), können die 3 Protonen der Säure durch 3 Na⁺-Ionen ersetzt weden: 3 Na⁺ + PO₄³⁻; Folglich ist die Formel von Natriumphosphat Na₃PO₄

Frage: Welche Formel hat Calciumphosphat und Blei(IV)-phosphat?

- → Da Calcium-Kationen Ca²⁺ zweiwertig sind, muss ein gemeinsames Vielfaches von 2 (Ca²⁺) und 3 (PO₄³⁻) gefunden werden; Daher muss die Formel $Ca_3(PO_4)_2$ sein: $3 Ca^{2+} + 2 PO_4^{3-}$
- \rightarrow Da Blei-Kationen Pb⁴⁺ vierwertig sind, muss die Formel Pb₃(PO₄)₄ sein: 3 Pb⁴⁺ + 4 PO₄³⁻

Und jetzt viel Spaß beim Lernen der Stammverbindungen!!!

Formel	Name	Salze	Rest b	zw. Ionen
HCl	Chlorwasserstoffsäure	Chloride	Cl	
HBr	Bromwasserstoffsäure	Bromide	Br ⁻	
HF	Fluorwasserstoffsäure	Fluoride	F	
HI	Iodwasserstoffsäure	Iodide	I-	
H_2SO_4	Schwefelsäure	Sulfate	SO_4^{2-}	
H_2SO_3	Schweflige Säure	Sulfite	SO_3^{2-} S^{2-}	
H_2S	Schwefelwasserstoffsäure	Sulfide	S^{2-}	
H_2CO_3	Kohlensäure	Carbonate	CO_3^{2-}	
HNO_3	Salpetersäure	Nitr at e	NO_3	
HNO_2	Salpetrige Säure	Nitr it e	NO_2	
H_3PO_4	Phosphorsäure	Phosphate	PO_4^{3-}	
NH ₄ OH	Ammoniakwasser	Ammonium	$\mathrm{NH_4}^+$	(Das Ammonium-Kation ist vergleichbar mit den Alkali-Ionen!)
		Hydroxide	OH-	(verantwortlich für die alkalische Reaktion!)
$KMnO_4$	Kaliumpermanganat	Permanganate	MnO_4	,
$K_2Cr_2O_7$	Kaliumdichromat	Dichromate	$Cr_2O_7^{2}$	-
H_2O_2	Wasserstoffperoxid	Peroxide	$Cr_2O_7^{2-}$ O_2^{2-} O_2^{2-}	
H_2O	Wasser	Oxide	O^{2-}	

Bei mehrprotonigen Säuren z.B. H₂SO₄, H₃PO₄, H₂CO₃, usw. kann es vorkommen, dass nicht alle Protonen der Säure durch Metall-Kationen ersetzt sind. Die entstehenden Salze werden als Hydrogen-Verbindungen bezeichnet.

Beispiele: Bei dem Kohlensäure-Molekül **H**₂CO₃ wird nur ein Proton H⁺ durch ein Na⁺-Kation ersetzt.

Die entstehende Verbindung nennt man Natriumhydrogencarbonat: NaHCO₃ bzw. Na⁺ + HCO₃⁻

(Hydrogencarbonat-Anion)

 $\overline{\text{KH}_2\text{PO}_4}$: Kalium**dihydrogen**phosphat; $\overline{\text{Ca}(\text{HSO}_4)_2}$: Calciumhydrogensulfat $\overline{\text{Ca}^{2^+}} + 2 \overline{\text{HSO}_4}$