Elektromagnetische Induktion

M. Jakob

Gymnasium Pegnitz

10. Dezember 2014

Inhaltsverzeichnis

Induktion

Induktion im bewegten und im ruhenden Leiter Magnetischer Fluss und Induktionsgesetz Erzeugung sinusförmiger Wechselspannung

Selbstinduktion

Selbstinduktion

In diesem Abschnitt

Induktion

Induktion im bewegten und im ruhenden Leiter

Magnetischer Fluss und Induktionsgesetz Erzeugung sinusförmiger Wechselspannung

Selbstinduktion

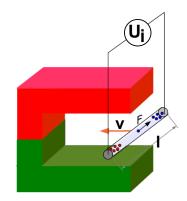
Selbstinduktion

Elektromagnetische Induktion

Induktion

Induktion im bewegten und im ruhenden Leiter

Grundversuche


- Exp: LED-leuchtet mit Dauermagnet und Feldspule
- Exp: Motor, und Generatorprinzip

└─ Induktion

Induktion im bewegten und im ruhenden Leiter

Induktion durch Bewegung

Wir bewegen einen Leiter der Länge *I* in einem homogenen Magnetfeld senkrecht zu den Feldlinien gleichförmig mit der Geschwindigkeit *v*.

Lorentzkraft: $F_L = qvB$ wegen $F_{el} = q\frac{U}{d}$ gilt somit $U_i = B \cdot I \cdot v$ U_i heißt Induktionsspannung.

5/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

Induktion

Induktion im bewegten und im ruhenden Leiter

Übungen

- div. Leifi-Veranschaulichungen http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion
- Col-online: Faraday-EM-Laben http://phet.colorado.edu/simulations/faraday/faraday.jnlp
- Ü 1.1: Induktion in einem Leiter run: Arbeitsblaetter/InduktionInLeiter.pdf

In diesem Abschnitt

Induktion

Induktion im bewegten und im ruhenden Leiter

Magnetischer Fluss und Induktionsgesetz

Erzeugung sinusförmiger Wechselspannung

Selbstinduktion

Selbstinduktion

Elektromagnetische Induktion

└ Induktion

Magnetischer Fluss und Induktionsgesetz

Auftreten von Induktion

• div. Leifi-Veranschaulichungen http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion

Elektromagnetische Induktion

in einer Leiterschleife tritt ein, wenn sich die "Anzahl der Feldlinien", die die Leiterschleife durchsetzen, ändert. Das kann erfolgen durch

- Anderung der Magnetfeldstärke ($\frac{\Delta B}{\Delta t} \neq 0$),
- ightharpoonup Änderung der Querschnittfläche des Leiters im B-Feld ($\frac{\Delta A}{\Delta t} \neq 0$) oder
- ightharpoonup Änderung des Winkels, den die Querschnittsfläche mit dem B-Feld bildet $\frac{\Delta \varphi}{\Delta t} \neq 0$.

Magnetischer Fluss und Induktionsgesetz

Beispiel: Induktion durch Flächenänderung

Skizze

Aus
$$U_i = B \cdot I \cdot v$$
 ergibt sich ... $U_i = B \cdot \frac{\Delta A}{\Delta t}$

9/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

Induktion

Magnetischer Fluss und Induktionsgesetz

Übungen

- Ü 1.2: AB EMInduktion 1 run: Arbeitsblaetter/EMInduktion1.pdf
- Ü 1.3: AB EMInduktion 2 run: Arbeitsblaetter/EMInduktion2.pdf
- Ü 1.4: Leiterschleife fällt in B-Feld run: Arbeitsblaetter/Leiterschleifefaelltdurch Magnetfeld.pdf
- Ü 1.5: paetec, S. 138 / 7

Magnetischer Fluss

Magnetischer Fluss

Für ein homogenes Magnetfeld B und eine Fläche A die mit den B-Feldlinien einen Winkel α bildet, heißt

$$\Phi = B \cdot A \cdot \cos \alpha$$
 Skizze Conelsen
$$[\Phi] = 1 \text{ T m}^2 = 1 \text{ V s} = 1 \text{ Wb}$$

der magnetischer Fluss. Die Magnetfeldstärke *B* heißt deshalb auch magnetische Flussdichte.

11/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

└ Induktion

Magnetischer Fluss und Induktionsgesetz

Induktionsgesetz

Herleitung... $U_i = B \cdot \frac{\Delta A}{\Delta t} = \frac{d}{dt} \Phi$ allgemeiner kann man beweisen:

Induktionsgesetz

In einer Leiterschleife mit N Windungen wird die Spannung $U_i(t)$ induziert.

lokales I-Gesetz: $U_i(t) = -N\frac{d}{dt}[\Phi(t)] = -N\Phi'(t) = -N\dot{\Phi}$

mittleres I-Gesetz: $U_i(t) = -N \frac{\Delta \Phi}{\Delta t}$

Bemerkung: Das Minus wird später erklärt.

Magnetischer Fluss und Induktionsgesetz

Links und Übungen

- Cornelsen Exp 2.4
- Induktion in bewegter Leiterschleife http://www.schulphysik.de/java/physlet/applets/induktion2.html
- Ü 1.6: Leifi

http:

//www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben

- (a) Mathematische Übungen zum Differenzieren 1
- (b) Fallender Leiterrahmen (Abitur BY 2004 GK A1-2)

13/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

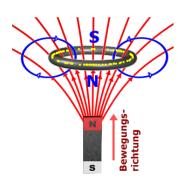
Induktion

Magnetischer Fluss und Induktionsgesetz

Lenz'sche Regel

• Div. Leifi-Versuche

http:


//www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/versuche

• Aplett, Lenz'sche Regel

http://micro.magnet.fsu.edu/electromag/java/lenzlaw/index.html

Lenz'sche Regel

Der Induktionsstrom ist stets so gerichtet, dass er die Ursache seiner Entstehung zu hemmen sucht.

Bemerkung: Die Lenz'sche Regel ist die Folge des Energieerhaltungssatzes für elektrische bzw. magnetische Phänomene.

Links und Übungen

- Exp: Wirbelstrombremse
- Exp: Ringversuch
- Wirbelstrombremse-Anderthalb

http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2010/10378/mov/lenzscheregel_lan.mov

15/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

Induktion

Magnetischer Fluss und Induktionsgesetz

Übungen

- Ü 1.7: Cornelsen, S.58, Wirbelstrombremsen
- Ü 1.8: Cornelsen, S.59/2,5,6
- Ü 1.9: Ausmessung des Erdmagnetfeldes http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben#lightbox=/themenbereiche/elektromagnetische-induktion/lb/musteraufgaben-ausmessung-des-erdmagnetfelds
- Ü 1.10: Spule auf Wagen, Abi GK 2007 http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben#lightbox=/themenbereiche/elektromagnetische-induktion/lb/musteraufgaben-spule-auf-wagen
- Ü 1.11: Ind. in einer langgestreckten Spule, Abi GK 2009 http:

//www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben

☐ Induktion

Magnetischer Fluss und Induktionsgesetz

Übungen

- Ü 1.12: Globaler elektrischer Kreislauf in der Atmosphäre, GK 2009 http://www.leifiphysik.de/web_ph11_g8/musteraufgaben/05induktion/gewitter_gk_09/gewitter_gk_09.htm
- Ü 1.13: Induktion durch Magnetfeldänderung

//www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben

• Ü 1.14: Induktionsstrom Nach GK Abitur 2002 - 1 - 2 http:

//www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben

• Ü 1.15: Fallender Leiterrahmen, Abi GK 2004 http:

//www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben

17/32 (Version 10. Dezember 2014)

In diesem Abschnitt

Induktion

Induktion im bewegten und im ruhenden Leiter Magnetischer Fluss und Induktionsgesetz

Erzeugung sinusförmiger Wechselspannung

Selbstinduktion

Selbstinduktion

Erzeugung sinusförmiger Wechselspannung

Generator und Motor

In einem B-Feld wird eine Spule der Fläche A mit einer konstanten Winkelgeschwindigkeit ω gedreht. Skizze...

$$\Phi = BA \cos \alpha = BA \cos \omega t$$
somit
$$U_i = \ldots = \underbrace{N \cdot BA \omega}_{U_{Max}} \sin(\omega t)$$

- Exp: Generator
- Fendt: Generator

http://www.walter-fendt.de/ph14d/generator.htm

19/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

Induktion

Erzeugung sinusförmiger Wechselspannung

Anwendungen

Anwendung der Induktion

Elektromagnetische Induktion findet oft dann Anwendung, wenn elektrische in mechanische Signale umgewandelt werden ober umgekehrt. Beispiele:

Generator, Transformator, FI-Sicherung, Datenspeicherung, Tonabnehmersysteme, Lautsprecher, Antiblockiersystem, Diebstahlsicherung (RFID-Chip), Induktionsschleifen im Straßenverkehr, Wirbelstrombremse, Zündanlage, Induktionsherd, Münzprüfung, Metalldetektoren.

Erzeugung sinusförmiger Wechselspannung

Anwendungen / Übungen

Metalldetektoren

http://micro.magnet.fsu.edu/electromag/java/detector/index.html

Leifi

http:

//www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/ausblick

- Ü 1.16: Erzeugung von Wechselspannung, GK Abitur 2001 http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben#lightbox=/themenbereiche/elektromagnetische-induktion/lb/musteraufgaben-erzeugung-von-wechselspannung-1
- Ü 1.17: Induktion in rotierender Spule, Abi GK 98 http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben#lightbox=/themenbereiche/elektromagnetische-induktion/lb/musteraufgaben-induktion-rotierender-spule
- Ü 1.18: Erzeugung von Wechselspannung http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/ aufgaben#lightbox=/themenbereiche/elektromagnetische-induktion/lb/ musteraufgaben-erzeugung-von-wechselspannung-2

21/32 (Version 10. Dezember 2014)

In diesem Abschnitt

Induktion

Induktion im bewegten und im ruhenden Leiter Magnetischer Fluss und Induktionsgesetz Erzeugung sinusförmiger Wechselspannung

Selbstinduktion

Selbstinduktion

Begriffsbildung

• Ü 2.1: Selbstinduktion - Qualitative Versuche, Versuchsprotokolle erstellen http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/versuche#lightbox=/themenbereiche/elektromagnetische-induktion/lb/selbstinduktion-qualitative-versuche

Selbstinduktion

Wird ein Stromkreis mit einer Spule geöffnet oder geschlossen, so ändert sich die Magnetfeldstärke der Spule und induziert eine Gegenspannung. Dieser Effekt heißt Selbstinduktion.

23/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

Selbstinduktion

Selbstinduktion

Induktivität einer Spule

Bekannt:
$$U_i(t) = -N \cdot \frac{d}{dt} \Phi = -N \cdot \frac{d}{dt} (B \cdot A)$$

Weil $B = \mu_0 \mu_r \frac{NI}{I}$ und A konstant ist, gilt

$$U_{i}(t) = -N \cdot A \cdot \mu_{0} \mu_{r} \frac{N}{I} \cdot \frac{d}{dt} I(t)$$

$$= -L \frac{d}{dt} I(t)$$

Induktivität einer Spule

Induktivität einer Spule

Eine Spule der Länge / mit der Windungszahl N und der Querschnittsfläche A hat die Induktivität

$$L = \mu_0 \cdot \mu_r \cdot N^2 \cdot \frac{A}{I}$$
$$[L] = 1 \text{ V s/A} = 1 \text{ H (1 Henry)}$$

Die Induktivität gibt an, wie stark die Änderung der Stromstärke in der Spule durch die Selbstinduktion behindert wird.

25/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

Selbstinduktion

L Selbstinduktion

Induktionsspannung bei Selbstinduktion

Induktionsspannung bei Selbstinduktion

$$U_{i}(t) = -L\frac{d}{dt}I(t)$$

mittleres Gesetz

$$U_{i}(t) = -L \frac{\Delta I}{\Delta t}$$

☐ Selbstinduktion

Selbstinduktion

Übungen

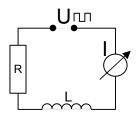
- Ü 2.2: Patec, S. 140/21,22
- \bullet Ü 2.3: Leifi Aufgaben http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben#Musteraufgaben-Oberstufe
- (a) Mathematische Übungen zum Differenzieren 2
- (b) Induktivität

27/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

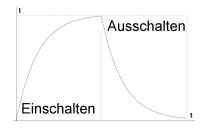
Selbstinduktion

Selbstinduktion


Ein- und Ausschaltvorgänge

- Exp: Ein-Ausschaltvorgänge http://www.leifiphysik.de/themenbereiche/elektromagnetische-induktion# Selbstinduktion
- Applet Ladevorgang http://www.schulphysik.de/ntnujava/rc/rc.html
- Herleitung und Lösung der DGL

Ein- und Ausschaltvorgänge


Ein- und Ausschaltvorgänge

In einem Stromkreis mit der Batteriespannung *U* dem Widerstand *R* und der Induktivität *L* gilt für die Stomstärke

beim Einschalten:
$$I = \frac{U}{R}(1 - e^{-\frac{R}{L}t})$$

beim Ausschalten: $I = \frac{U}{R}(e^{-\frac{R}{L}t})$

29/32 (Version 10. Dezember 2014)

Elektromagnetische Induktion

Selbstinduktion

Selbstinduktion

Übungen

- Ü 2.4: AB Induktivität einer Spule run: Arbeitsblaetter/InduktivitaetEinerSpule.pdf
- Ü 2.5: Leifi Musteraufgaben Oberstufe-Selbstinduktion http:

//www.leifiphysik.de/themenbereiche/elektromagnetische-induktion/aufgaben

- (a) Einschaltvorgang bei Spulen
- (b) Eisenkern aus Spule
- (c) Rund um die Selbstinduktion
- (d) Elektrischer Weidezaun
- (e) Selbstinduktion im Diagramm

Energie des magnetischen Feldes

• Ü 2.6: Energie des Magnetfeldes einer Spule http://www.leifiphysik.de/themenbereiche/magnetisches-feld-spule

Energie des magnetischen Feldes

Für die magnetische Energie eine stromdurchflossenen Spule gilt

$$W_{mag} = \frac{1}{2}L \cdot I^2$$

• Ü 2.7: Paetec, S 141/30

31/32 (Version 10. Dezember 2014)